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Abstract

Predicting behavior of large-scale biochemical metabolic networks represents oiic of the
greatest challenges of bioinformatics and computational biology. Approaches, such as flux
balance analysis (FBA), that account for the known stoichiometry of the reaction network
while avoiding implementation of detailed reaction kinetics are perhaps the most promising
tools for the analysis of large complex networks. As a step towards building a complete
theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which
compliments the FBA approach by introducing fundamental constraints based on the first and
second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible

and provide valuable insight into the activation and suppression of biochemical pathways.

Conservation principles impose constraints on the fluxes and chemical potentials associated with
biochemical network reactions that are analogous to Kirchoff’s current and voltage laws for

electrical networks (1). Flux balance analysis (2-13) invokes mass conservation, but does not
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consider the chemical potential of non-equilibrium steady state chemical fluxes. The
thermodynamic analysis presented here—energy balance analysis (EBA)—provides additional
constraints on the system that are analogous to the voltage loop law. In addition to predicting
network fluxes that are thermodynamically feasible, EBA facilitates a detailed analysis of

regulation of metabolic networks that is not available from FBA alone.

The central flux balance conservation statement is given by the equation:

Sf=0, (1)

mxn

where f € R"is the vector of n fluxes occurring in the network, S€ R™" is the stoichiometric
matrix, and m is the number of reactants in the system. The matrix § stores the stoichiometric
coefficients associated with each flux in the network. In the above formulation both internal
fluxes and boundary fluxes, which fransport material into or out of the system, are included in S.

Typically, a number of inequalities are introduced to constrain the boundary fluxes depending

upon the external media (7-10, 12, 13):
o <f<h. (2)
As implemented by Palsson and colleagues (2, 7-13), biological networks are assumed to

optimize a certain biologically meaningful objective function, which is a linear combination of

the fluxes:
Z=Ycf=cf. (3)
i=l

For example, in the analysis of E. coli central metabolism the objective is constructed from the
production of biosynthetic precursors required to generate biomass (8, 10). Another example

uses maximization of ATP production to simulate mitochondrial energy metabolism (11).



Regardless of the application. optimization of a linear objective function (Eq. 3). together with
the equality constraints (Eq. 1) and the inequality constraints (Eq. 2). represents a linear

optimization problem, which can be solved with linear programming (14).

The power of FBA is illustrated by the tour de force assembly of the complete stoichiometry of
the known reactions in E. coli central metabolism provided by Edwards and Palsson (8, 10).
Edwards and Palsson show that the flux balance simulation of the organism-scale metabolic
network predicts the metabolic capabilities of E. coli (8, 10). Under various external constraints
(e.g. aerobic vs. anaerobic growth) FBA can distinguish between genes essential and not
essential for growth in 68 of 79 cases studied (8). This predictive capability of FBA is striking
considering the tremendously complex problems that can be modeled using little or no free

<
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parameters.

Lacking from FBA is the explicit consideration of the energy balance and thermodynamics of the
network reactions. Since biochemical networks are comprised of multiple-species reactions,
energy balance loop equations cannot be obtained from topological loops in the network, as is
done in electrical circuit analysis (1). However, we will show that the energy balance equations

are obtained from an analysis of the network stoichiometry.

If we combine redundant fluxes and remove the columns from S that correspond to boundary
fluxes, the remaining matrix, denoted S, represents the complete set of possible internal
chemical transformations. Using the singular value decomposition (14), $° can be decomposed

as:



S’=AABRT, (4)

where A has the following form:
A=|: -t F. (5)

The first m columns of A form a diagonal matrix where the diagonal entries are the singular

values 4. The entries of the remaining columns are all equal to zero. If n,is the number of
columns of §” and  is the rank of S’, then columns r+1 through n, of the matrix B provide the
(n, —r)-dimensional null space of S’. We introduce the matrix K, which stores the null space
vectors of §”:

K=} i, (6)
B B

La, o m.n,
and we denote the i” row of K as I:r,.. Summing the n, chemical reactions, each scaled by the

corresponding entry of IE,. , results in a perfectly balanced reaction equation (with same reactants

in equal proportion on either side of the equation). An example of this analysis for a simple five-

metabolite network with four reactants is illustrated in Fig.1.

To study network thermodynamics, we consider the vector Ax that lists the n_chemical potential

differences associated with the reaction fluxes. Since each IE,. provides weights for exactly

balancing the chemical reaction equations (see Fig. 1), solutions to the equation

KAu=0 @)



balance the global free energy of the network. Eq. 7 is a statement of conservation of energy. and
hence follows from the first law of thermodynamics (13). The second law of thermodynamics

takes the form of an inequality constraint for each flux,
fi-Bu, <0, (8)

which ensures that each reaction dissipates energy. Note that the first law imposes an equality
while the second law imposes an inequality, as expected. Eqs. 7 and 8 represent thermodynamic
constraints that should be considered in addition to the flux balance constraints. Eq. 8 provides a
link that couples mass balance and energy balance, and constrains the feasible flux space more

strictly than Egs. 1 and 2 alone.

We have obtained the stoichiometric matrix provided by Edwards and Palsson (10), used to
represent the flux balances in the E. coli central metabolism. The web-posted supplementary
information (10) provides detailed descriptions of the reaction network, which contains 953
fluxes (735 internal; 218 boundary) acting on 536 metabolites. Using the MATLAB (The
Mathworks Inc., Natick, MA) optimization package we reproduced the linear programming
analysis presented in Ref. 10, and optimized the production of biomass with glucose and oxygen
uptake constrained to be less than or equal to 10 and 15 mmol g-DW™' h', respectively. The

resulting flux produces a growth rate of 0.81 h”' on glucose minimal media.

To compute the thermodynamic properties of this large-scale network we first combine
redundant fluxes (e.g., the phosphofructokinase A and B reactions are combined into a single

column of §), resulting in n_ =617 internal reactions operating on 536 metabolites. The growth

is the optimized under the flux balance constraints (Eqs. 1 and 2) and the constraint that the



energy balance equations (Eqs. 7 and 8) are satisfied. We impose the additional constraint that
Aut must be finite for all nonzero fluxes. The free energy can go to zero only if the flux is zero.
implying that a given reaction is in chemical equilibrium. This analysis predicts the same optimal
growth rate (0.81 h”' on glucose minimal media) as that reported above for FBA. Yet the FBA
prediction does not represent a unique solution to the optimization problem because
redundancies in the metabolic network allow the optimal growth rate to occur for an infinite
number of possible internal ﬁux distributions. Since the EBA-constrained solution is (at least in
this case) able to achieve the same optimal growth rate as that obtained by considering only the
FBA constraints, the fluxes obtained by EBA represent one particular optimal solution to the
FBA linear programming problem. However, optimal flux distributions obtained by considering
flux balance alone are not necessarily thermodynamically feasible. The EBA constraints further
restrict the set of feasible fluxes, and provide a more physically realistic flux distribution.
Selected fluxes from glycolysis, TCA cycle, and respiration are tabulated in Fig. 2. Fluxes from
the wild type on glucose media under aerobic and anaerobic conditions are labeled WT (oxygen)

and WT (anaerobic), respectively.

EBA further allows quantitative estimation of the chemical potentials in the system. First, we

introduce the flux resistances, defined as r =—-Au,/ f,. To avoid the unphysical situation in
which Ay, =0 for a finite f,, which is equivalent to setting the flux resistance equal to zero, we

assume that there exists a minimum flux resistance, r,,, (which is equivalent to saying that there

exists an upper limit to the effective reaction rate constants). Thus the second law constraint is

modified:

Au,<-r.f. f,>0



Au 2+r f . f <0, 9
Realistically, each flux may have a different r__. However for our purposes we find that a single
value, . =400 kcal mol™” g-DW h, produces reasonable behavior and can be used to describe

the entire network (16). The energy balance constraint can alternatively be written in terms of the

chemical potentials (Eq. 7) or the flux resistances:

k]l . ! |=K-diag(f)-r=0. (10)
0 /.

With the fluxes fixed using the values obtained from the above analysis, we use quadratic
programming to find an optimal Az that minimizes the norm of the free energy vector IAﬂlz. In

addition to the fluxes, Fig. 2 lists the predicted chemical potentials and the conductances,

¢, =r", of each reaction. The choice of r_, =400 kcal mol? g-DW h results in reasonable

predictions of chemical potential. For example, Ay, =-9.55 kcal mol™ for ATP hydrolysis.

The reaction conductance provides a measure of the activation level of the pathway. If ¢, =0

then the associated enzyme(s) is not present or is deactivated. Increﬁses in flux or conductance,
at a fixed free energy, indicate that a pathway is up regulated, at either the expression level or the
post-translational level. By changing the boundary constraints, we can study how the metabolic
network responds to changes in substrate. In Fig. 2 we compare the predicted EBA fluxes and
free energies for the WT cell grown under aerobic and anaerobic conditions. We identify a
pathway as “down regulated” (colored blue) if the flux conductance decreases by a factor of 4 or

more, and “up regulated” (colored green) when the conductance increases by more than a factor



of 4. Based on this analysis we identify three enzymes that require activation upon moving from
aerobic to anaerobic conditions: fumarate reductace. pyruvate formate lysase, and pyndine
nucleotide transhydrogenase. Other pathways show increases or decreases in flux compared to
aerobic growth. However these differences can be accounted for by changes in the free energy

and thus do not necessarily require regulation.

Following the work of Edwards and Palsson (8, 10) we studied the effects of gene knockouts on
the metabolic capabilities of E. coli. We found that zwf, pgl, and gnd knockouts result in the
same predicted phenotype (Fig. 2), with only two up regulations compared to WT: succinate
dehydrogenase and pyridine nucleotide transhydrogenase. Again, a number of predicted fluxes
that differ from the WT do not require up regulation of the associated enzymes. The situation is
similar for pyk and pgi knockouts. The pyk knockout requires an up regulation of
phosphoenolpyruvate carboxylase to maintain growth of almost 99% that predicted for WT. No
other significant regulations are predicted. The pgi knockout analysis predicts one significant up
regulation and three down regulations and a similar growth rate. Thus, we find that much of the
capacity for metabolic control is built in to the wild type expression and activation levels. Few
regulatory steps are required when nonessential genes are knocked out; the network is robust and

tolerant to errors and deletions (17,18).

However, the situation is different when essential genes are knocked. The eno and pfk genes are
examples of genes that FBA falsely identifies as nonessential to growth on glucose minimal
media (8). The fact that eno and pfk are essential for growth in vivo (19) may be related to the

demands that the knockouts of these genes place on metabolic regulatory mechanisms. These



demands are much heavier than those imposed by nonessential knockouts. Our analysis predicts
that maintaining growth with these knockouts requires a greater number of pathway regulations
than for the nonessential knockouts. Of the 64 reactions listed in Fig. 2, 15 are predicted to be
upregulated and 15 downregulated for the pfk knockout. Thus, the predicted phenotype is
markedly different from the wild type for nearly half of the reactions associated with glycolysis,

TCA cycle, and respiration, while the pyk and pgi knockouts differ very little from WT.

These predictions are based on one major simplification—that the entire network can be

characterized by a single r

min ?

or equivalently a maximum pathway conductance. More

realistically, constraints could be placed on each pathway based on a priori knowledge of the
biochemistry. One promising aspect of EBA is that it is possible to incorporate as much, or as
little, as is known about the individual reactions. For example, if we know that the ratio
[ATPJ/[ADP] in the cell is greater than the equilibrium ratio (20), then we know that the free

energy of ATP hydrolysis satisfies the inequality:

Al grp s app S DU’ atp—sa0r = —T.3keal mol™. (11)

In general, consider the reaction A— B. If the ratio [A]/[B] is greater than 1, then the free
energy of that reaction is constrained Ay, < Ay’ . Alternatively, if the concentration ratio is less
than 1, then Ay, > Au’. If the reactant concentrations are known, then the constraint becomes an
equality: Ay, = —k,TIn(Km[A]/[B]), where k, is Boltzmann’s constant, T is the absolute

temperature, and K, is the equilibrium constant of the reaction.



Together. flux balance and energy balance provide basic laws for the analysis of biochemical
networks. These laws, akin to the basic principles of circuit theory for electrical networks, make
the analysis and design of large-scale biochemical systems practical. The engineering approach
to analysis and design of such complex systems is the identification of modular components that
are separable within the system (21). Flux balance and energy balance circuit theory provides a

basis for understanding how these modules function and interact.
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Figure Legends

Figure 1: Illustration of energy balance equations for a network of five reactions. The first step is
determination of the stoichiometric matrix from the reactions in the network. For this example,
the stoichiometric matrix has rank r =3, resulting in 2 independent null space vectors. The null

space vectors provide mutually orthogonal solutions to Sf =0. In addition, the null space

vectors are the rows of the matrix K, the energy balance matrix for which K AG = 0.

Figure 2: Regulation of reactions in glycolysis, TCA cycle, and respiration. Predicted
biochemical fluxes (in mmol g-DW‘l h'"), chemical potentials (in kcal mol™"), and conductances
(in ??) are reported for 64 central metabolic reactions, for wild type (WT) aerobic and anaerobic
growth, and for zwf, pgl, gnd, pyk, pgi, eno, and pfk knockouts. Predicted growth rate for each
case is reported in units of hr''. Green and blue shading indicate up and down regulation relative
to WT, respectively. Yellow indicates that a reversible flux has changed direction. Gray shading
indicates that the flux cannot be identified as a site of regulation because, although the
conductance has changed moderately (by less than a factor of 10), the magnitudes of the free
energy and the flux have both either increased or decreased. .“N.P.” denotes enzymes that are not
present under given conditions. “Eq.” refers to reactions that are at equilibrium, for which the

conductance cannot be estimated. All simulations are performed for glucose minimal media.
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Reaction Network:

Stoichiometric Matrix:

rxnl rxn2 rxn3 rxn4 rxn$
xnl: A+2Be C a [ ) 1 y 0
xn2: C+D e 2A+2B
M3 A+Bo2D e B2 |2 -1 O -]
rxn4: A D C |+l -1 0 0 0
xn5BeoD D|O -1 +2 +1 +1

Null Space Veciors:

Ihcl = [0.5620, 0.5630, 0.4148, 0.1483, —0.4148]
I:',z = [0.2409, 0.2409, -0.4505, 0.6914, 0.4505]

Stoichiometric Balance Equations:

Kl’l - (rxn 1)+K1,2-(rxn 2)+K1’3-(rxn 3)+K1’4-(rxn4)+K1’5-(rxn 5)

=2A+2B+C+D—>2A+2B+C+D

Ky - (xn 1)+ K, ,-(rxn2) + K3 - (1xn 3) + Ky 4 - (rxn 4) + K5 5 (rxn 5)

=2A+2B+C+D—->2A+2B+C+D

Energy Balance Equations:

K Ap =

14
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